Experimental Proposal \$358

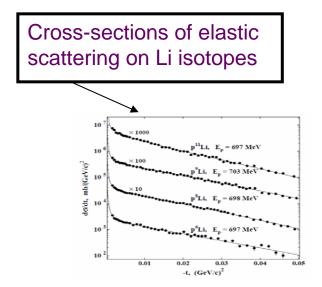
• Title: "Study of the nuclear spatial structure of neutron-rich B and C isotopes by proton elastic scattering in inverse kinematics"

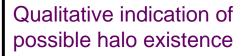
Spokesperson: A.Khanzadeev, PNPI

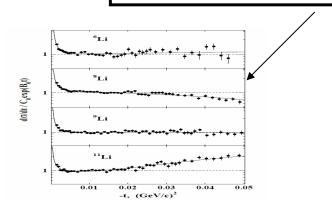
GSI Contact Person: P.Egelhof, GSI

Year of Approval: 2008

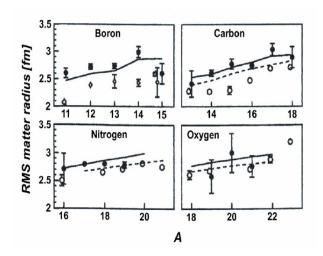
• Shifts: 39 shifts approved (main) with Committee recommendation to focus on the carbon chain because of the expected discovery potential

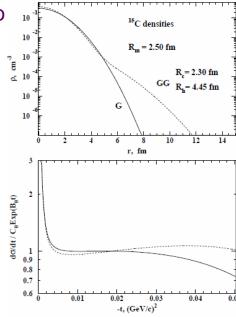

Physics Motivation

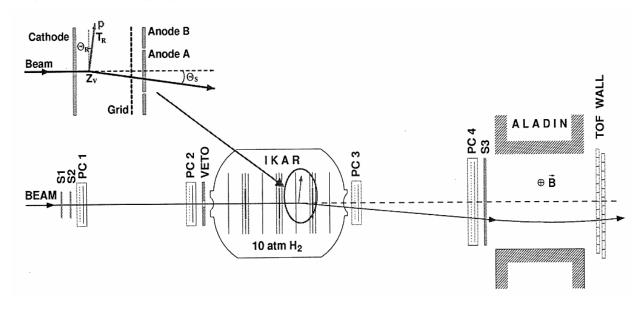

Goal of our program - investigating the evolution of nuclear sizes and shapes of light nuclei from the valley of beta-stability to the drip-line. In the nuclei near the drip line the valence nucleon(s) may have a very extended density distribution, called "halo".


At the last step of our program we are going to study nuclear sizes and shapes of isotopic chain C12,14,15,16,17 by small-angle proton elastic scattering in inverse kinematics at intermediate energy (~ 700 MeV/u).

IKAR experiment measures the absolute elastic cross-section $d\sigma/dt$ in the range $0.002 \ge |t| \ge 0.050$ (GeV/c)2 of the four-momentum transfer squared t. Glauber multiple scattering theory relates the measured cross-sections with the studied density distributions giving simultaneously the matter, core and valence nucleon(s) r.m.s. radii.


This method was proved in experiments **S105** on **p-He**4,6,8 (1993) and **p-Li**6,8,9,11 (1996), and **S247** on **p-Be**7,9,10,11,12,14 and **p-B**8 (2005-2006)




Information on halo structure in carbon isotopes is rather contradictory. There is evidence of one neutron structure in **C19** and **C15**. For **C16** reaction cross-section measurement suppose 2-n hallo, but a relatively broad momentum distribution of breakup fragments for **C16** shows no hallo formation. Contradictory results we have for **C17** also.

Setup

• FRS focal planes equipment

- Is the setup ready? All parts were revised and ready
- Is there any new or non-standard equipment required? No
- Is there a modification or a new DAQ required? May be some minor modification is required

• What is the requested primary beam and intensity?

	particle / spiii	MeV/A	mg/cm ⁻	composition	Made with LISE++
	¹⁸ O beam				Widde With Eloc:
¹² C	3.8·10 ⁷	760	800	¹² C (99.7%) ¹⁴ N (0.2%) ¹⁰ B (0.1%)	
¹⁴ C	3.3·10 ⁷	760	1000	¹⁴ C (99.8%) ¹⁶ N (0.1%) ¹² B (0.1%)	
¹⁵ C	6.9·10 ⁷	754	800	¹⁵ C (99.5%) ¹³ B (0.2%) ¹² B (0.2%) ^{17,18} N (0.1%)	
¹⁶ C	2.1·108	754	800	¹⁶ C (98.5%) ¹³ B (1.5%)	
	²² Ne beam				
¹⁷ C	1.1010	760	1200	¹⁷ C (99.0%) ¹⁶ C (0.5%) ¹⁴ B (0.4%) ¹⁸ C, ¹⁵ B (0.1%)	

• How many shifts are requested for 2010? 39 shifts